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Abstract-The elastic constants of hexagonal zinc sulfide were measured at room temperature . 
Velocity measurements used for computing the elastic constants were m ade at 10 me/sec using a 
coherent pulse/cw technique. The derived values of the elastic constants, in units of 101 2 dyn /cm2 

are: ell = 1 '312, C12 = 0'663, cu ' = 0'509, C33 = 1·408 and c .. = 0·286. Curves of intersection of 
the velocity surfaces with the XZ plane are given and compared with similar curves for hexagonal 
cadmium sulfide. 

1. INTRODUCTION 

THE WORK reported here was undertaken primarily 
to measure the velocities of propagation of pure 
compressional and pure shear elastic waves along 
the c axis of zinc sulfide, required for determining 
the thickness of half-wavelength vapor deposited 
ZnS piezoelectric transducers.(l) As the ZnS 
sample obtained was large enough to propagate 
elastic waves along three suitable separate crystal­
lographic directions, all five independent elastic 
constant (cll , C12' C13' C33 and C44) were determined 
from the eight independent velocity measurements 
made. In addition, three internal checks on the 
accuracy of the results were obtained. The velocities 
were measured by a coherent pulse/cw technique(2) 
which permitted a simultaneous comparison with 
the conventional pulse/echo technique. 

2. RELATIONS BETWEEN ACOUSTIC VELOCITIES 
AND E~ASTIC CONSTANTS 

For propagation ' of plane elastic wav~s in 
hexagonal crystals, MUSGRAVE(3) has derived the 
following wave equation 

l
12a+ m2(c(2) - H, Im(a - (c/2)), 

Im(a - (c(2)), 12(c/2) + m2a - H, 
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where I, m, n are the direction cosines of the wave 
normal, cli are elastic constants, v is acoustic 
velocity, p is density and 

a = cll -c44 

C = cll -C12-2C44 

d = C13 +c44 

h = c33-C44 

H = pv2-c44 

(2) 

(3) 

(4) 

(5) 

(6) 

It can be shown from equation (1) that circular 
symmetry about the X3 or Z axis exists for both 
the velocity and wave surfaces. Thus the circles 
of intersection of the free velocity surfaces with 
the basal plane are the roots of the equation 

W-(a+tc)H2+tacH = 0 (7) 

which is obtained from equation (1) by allowing n 
to become zero. 

The elastic constants cll , C12, C44 can be obtained 
by measuring the velocities of propagation of the 
three acoustic modes in the basal plane. The 
appropriate equations are 

pVL
2 = c11 

pvT1
2 = !Ccll - C12) 

PVT.
2 = c44 

(8) 

(9) 

(10) 

In these equations L refers to the compressional 
mode, Tl to the shear mode with displacement 
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vector parallel to the basal plane and T2 to the 
shear mode with displacement vector normal to 
the basal plane as shown in Fig. 1. Propagation 
along the hexad axis yields c33 and an internal 
check on Cu as shown in the following equations 

(11) 

and 

PVT2 = Cu (12) 

The last of the five independent elastic constants 
c13 can only be derived from the equations f~r 
propagation at some angle between the hexad aXIs 
and the basal plane. For propagation at 45° to the 
hexad axis one obtains for the Tl mode 

p(vTY = Hcll-c12+2cu) (13) 
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FIG. 1. Hexagonal ZnS symmetry element. 

and for the Land T2 modes 

pv2 = HCll +c33 +2cu )±! 
x {(Cll-C33)2+4(C13+CU?}l f2 (14) 

In this equation the positive second term applies 
to the L mode and the negative to the T2 mode. 

The equations for the curves of intersection of 
the velocity surfaces of the three acoustic modes 
with any plane containing the hexad axis can be 
obtained from equation (1) into which the com­
puted values of the cjj ha\'e been substituted. The 
appropriate equation is 

[H - !c( 1 - n2 )] 

x [H2 - {n2Jz + (1- 112)a}H + 1l2(I_n2) 

x(ah - d 2 )] =0 (15) 

where 11 is allowed to assume all values between 
+ 1 and -1. 

3. VELOCITY MEASUREMENTS 

A single crystal of hexagonal ZnS, grown in 
these Laboratories, was cut and polished to have 
pairs of parallel faces normal to the Xl and Xa 
axes and to a direction in the X 2X 3 plane at 45' 
to either of these axes as shown in Fig. 1. The 
directions of the displacement vectors are shown 
in this diagram for each propagation direction used 
in these measurements. The transducers used were 
10 mc/sec x- or y-cut quartz plates obtained from 
Valpey Crystal Corp. The pulse/cw technique 
used has been described elsewhere. (2) Table 1 

Table 1. Velocity measurements 

Propagation Displacement Velocity 
Mode direction direction x 10" cm secl 

(along axis)* (along a."is)* 

L X3 X3 5'868 
Tt X. Xl 2·645 
L Xl Xl 5·667 
Tl Xl X2 2'815 
T2 Xl X3 2·644 
L 45° to X3 43° to X3 5·469 
Tl 45° to X3 X 2 2 ·717 
T2 45° to X3 -47° to X3 3·224 

• See Fig. 1. 
t Shear modes degenerate. 

lists the eight independent velocity measur~men~5 
used for calculating the elastic constants given 10 

Table 2 and the curves of intersection of the velo-

Table 2. Elastic constants in units of 1012 dyn cm -2 

C13 

1·312 0·663 0·286 1·408 0·509 

=======================-

city surfaces with any plane containing the Z or 
X3 axis shown in Fig. 2. 
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FIG. 2. Curves of intersection of velocity surfaces with 
any plane containing the Z axis. 

4. WAVE SURFACES and 

1833 

The curves of intersection of the wave surfaces(3) 
with any plane containing the Z axis are loci of 
points R such that A ' _ C44 

1--
pVI 

(18) 

(V A ')2 
R 2 - ' - , 2A ' A '2 , - ( )2 + , V, - , 

cos£, 

or 

where 

and HI is as defined in equation (6). The para­
meters RI , £" At' and v, are as 'defined in Fig. 3. 

~ .:; JI'he angle t:,.. between the wave normal and the 
direction of energy flow is defined by 

(17) 

tan t:,..1 = (VI ~,A, ') tan £, (19) 

Figure 4 shows how the ray direction, or energy 
flow, deviates from the wave normal for each of 
the modes L, T1 and T2 as a function of e, which 
is the angle between the Z axis and the wave 
normal, in any plane containing the Z axis. 
Figure 5 shows a plot of (t:,.. + e) as a function of e 
for all three modes. The section of the T2 mode 
curve for 20° < e < 70° corresponds to the CllSp 
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between 40° and 50° in Fig. 6, in which are shown 
the eurves of intersection of the wave surfaces 
with any plane containing the Z axis: As indicated 
earlier, this is a plot of R j as a functIOn of (~+ 8). 
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FIG. 3. Relation between wave normal and energy flow 
direction. 
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FIG. 6. Curves of intersection of wave surfaces for ZnS 
with any plane containing the Z axis. 

not pure modes except in the basal plane, along 
the Z axis, and along the cone mentioned in the 
next paragraph. 

The deviation, 8, of the L mode displacement 
,'eetor from the wave normal for propagation 111 

any plane containing the Z axis is given by(3) 
t 

m2nd+n(HL -m2 a) ~ 
eos SL = . (20) 

--I.!H L - m2a)2 + m2 1l2d2 ]l /2 

" The Land T2 mode displacement vectors always 00-' 

remain in the plane containing the wave normal 
and the Z axis. As the three displacement vectors 
are mutual1y orthogonal and the Tl mode displace­
ment vector is always parallel to the basal plane, 
equation (20) wil1 also give the deviation, 8T " for 
the T2 mode. Figure 7 indicates how 8 varies as a 
function of 8. This figure indicates that other L, 
T1, T2 pure mode directions wi\l form a cone, with 
axis along the hexad axis, and the semi-angle of 50°. 
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As a comparison with CdS, Fig. 8 shows the 
CUrves of intersection of the velocity surfaces with 

FIG. 7. Deviation of displacement vector of quasi­
longitudinal wave (L mode) from the wave normal. 
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FIG. 8. Curves of intersection of velocity surfaces for 
CdS in any plane containing the Z axis. 
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any plane containing the Z axis. Data used for this 
curve were obtained from measurements made by 
BOLEF, MELAMED and MENES.(5) The anisotropy 
is slightly greater in ZnS than in CdS. Figure 9 
compares the measured values of c" with theoret­
ical values calculated by ZHDANOV and BRYSNEVA (6) 

from measurements on cubic ZnS made by 
BHAGAVANTAM and SURYANARAYANA.(7) 
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