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Abstract—The elastic constants of hexagonal zinc sulfide were measured at room temperature.
Velocity measurements used for computing the elastic constants were made at 10 mc/sec using a
coherent pulse/cw technique. The derived values of the elastic constants, in units of 10'? dyn/cm?
are: ¢;; = 1:312, ¢35 = 0663, ¢35 = 0:509, ca3 = 1408 and c44 = 0-286. Curves of intersection of
the velocity surfaces with the XZ plane are given and compared with similar curves for hexagonal

cadmium sulfide.

1. INTRODUCTION

THE WORK reported here was undertaken primarily
to measure the velocities of propagation of pure
compressional and pure shear elastic waves along
the ¢ axis of zinc sulfide, required for determining
the thickness of half-wavelength vapor deposited
ZnS piezoelectric transducers.?> As the ZnS
sample obtained was large enough to propagate
elastic waves along three suitable separate crystal-
lographic directions, all five independent elastic
constant (¢, €19, €13, €33 and ¢,4) were determined
from the eight independent velocity measurements
made. In addition, three internal checks on the
accuracy of the results were obtained. The velocities
were measured by a coherent pulse/cw technique!®
which permitted a simultaneous comparison with
the conventional pulse/echo technique.

2. RELATIONS BETWEEN ACOUSTIC VELOCITIES
AND ELASTIC CONSTANTS

For propagation of plane elastic waves in
hexagonal crystals, MusGRAVE®® has derived the
following wave equation

Patm(c[2)—H, Im(a—(c/2)), ~nld
Im(a—(c[2)), I%(c/2)+m2a—H, mnd

| nld mnd, n’h—H
= (1)

* The work reported here was supported in part by
the U.S. Air Force Cambridge I esearch Laboratories
Contract No. AF 19(628)-4372.

where I, m, n are the direction cosines of the wave
normal, ¢;; are elastic constants, v is acoustic
velocity, p is density and

@ = €11 —C44 (2
€ =€ —C1p— 24 (3)
d=cjgtcy “4)
h = cgg—cyq (%)
H = pv®—cy (6)

It can be shown from equation (1) that circular
symmetry about the X or Z axis exists for both
the velocity and wave surfaces. Thus the circles
of intersection of the free velocity surfaces with
the basal plane are the roots of the equation

H3—(a+3c)H?+}acH = 0 @)

which is obtained from equation (1) by allowing 7
to become zero.

The elastic constants ¢, ;, €14, €44 can be obtained
by measuring the velocities of propagation of the
three acoustic modes in the basal plane. The
appropriate equations are

P = ¢ (8)
pvr,? = ¥(e11—¢10) %
P”r.2 = C44 (10)

In these equations L refers to the compressional
mode, T, to the shear mode with displacement
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vector parallel to the basal plane and T, to the
shear mode with displacement vector normal to
the basal plane as shown in Fig. 1. Propagation
along the hexad axis yields ¢33 and an internal
check on ¢;4 as shown in the following equations

pvL? = g3 (11)

and
pUr® = Cqq (12)
The last of the five independent elastic constants
¢;3 can only be derived from the equations for
propagation at some angle between the hexad axis

and the basal plane. For propagation at 45° to the
hexad axis one obtains for the 7; mode

p(vr,)? = 31 —€12+2¢44) (13)
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F1G. 1. Hexagonal ZnS symmetry element.

and for the L and 7', modes
pv? = I(c11+ a3 +2¢44) £ 1
x {(c11—€aa)? +4(c1a )} (14)

In this equation the positive second term applies
to the L mode and the negative to the 7, mode.

The equations for the curves of intersection of
the velocity surfaces of the three acoustic modes
with any plane containing the hexad axis can be
obtained from equation (1) into which the com-
puted values of the ¢;; have been substituted. The
appropriate equation is

[H —3e(1 — %]
x [H?— {n?h+ (1 — n?)a}H + n*(1 — n?)
x (ah—d?)] = 0 (15)

where n is allowed to assume all values between
+1 and —1.

3. VELOCITY MEASUREMENTS

A single crystal of hexagonal ZnS, grown in
these Laboratories, was cut and polished to have
pairs of parallel faces normal to the X; and X,
axes and to a direction in the X,X; plane at 45°
to either of these axes as shown in Fig. 1. The
directions of the displacement vectors are shown
in this diagram for each propagation direction used
in these measurements. The transducers used were
10 mc/sec x- or y-cut quartz plates obtained from
Valpey Crystal Corp. The pulse/cw technique
used has been described elsewhere.® Table 1

Table 1. Velocity measurements

Velocity

Propagation Displacement
% 10° cm sec ™!

Mode direction direction
(along axis)* (along axis)*

L X3 X3 5-868
Ty X3 X, 2645
L X, X, 5667
T, X, X2 2-815
T X, X3 2:644
L 45° to X3 43° to X5 5-469
T 45° to X3 X, 2-717
T, 45° to X3 —47° to X3 3-224

* See Fig. 1.
1 Shear modes degenerate.

lists the eight independent velocity measurements
used for calculating the elastic constants given 1n
Table 2 and the curves of intersection of the velo-

Table 2. Elastic constants in units of 10'% dyn cm™?

€11 €12 €as €33 €13

1-312 0663 0-286 1-408 0-509

—

city surfaces with any plane containing the Z of
X axis shown in Fig. 2.
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F1G. 2. Curves of intersection of velocity surfaces with
any plane containing the Z axis.

4. WAVE SURFACES

.The curves of intersection of the wave surfaces®
with any plane containing the Z axis are loci of
points R such that

(v,—4)?

RpSCI s b
i (cos e)? +‘” A, v — A4,
or
R2=(——‘ )2 24,'v,— 4,
’ (pv; cos€) tediv—47 (16)
where

i = L» Tl» Tz
m2ntdt
[(H, —m2a)? + m?n2d?}?
(H,— m%)“ ~1/2
®
w2 [m?n?d? + (H,— m2a)?)?

COS G‘ —3 {

and

Caq
A" =R 18
P% A
and H, is as defined in equation (6). The para-
meters Ry, €;, A, and v; are as defined in Fig. 3.

e q:.he angle A between the wave normal and the
, direction of energy flow is defined by

v,— A’
tan A; = ( ‘v {)tanc, (19)
i

Figure 4 shows how the ray direction, or energy
flow, deviates from the wave normal for each of
?he modes L, T and T, as a function of 6, which
is the angle between the Z axis and the wave
normal, in any plane containing the Z axis.
Figure 5 shows a plot of (A+0) as a function of 6
for all three modes. The section of the T, mode
curve for 20° < § < 70° corresponds to the cusp
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between 40° and 50° in Fig. 6, in which are shown
the curves of intersection of the wave surfaces
with any plane containing the Z axis. As indicated
earlier, this is a plot of R; as a function of (A+6).

2, X, Axis
]

(£, m,n
/ Wave Normal

Energy Flow
4
ON =v;
ol = A;
0P =R;

FIG. 3. Relation between wave normal and energy flow
direction.
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Fic. 5. (A+6) plotted as a function of 8 for modes
L, Ty and T3.

The T, mode is always a pure mode fmd hence
the associated displacement vector- 1S always
parallel to the basal plane. The L and Ty modes are

Fic. 4. Deviation of ray from wave norma.ﬂ _in ZnS fpr
L, T; and T, modes in any planc containing Z axis.
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F1G. 6. Curves of intersection of wave surfaces for ZnS
with any plane containing the Z axis.

not pure modes except in the basal plane, along
the Z axis, and along the cone mentioned in the
next paragraph.

The deviation, 8, of the L mode displacement
vector from the wave normal for propagation in
any plane containing the Z axis is given by®

m2nd +n(H,—m>a)

cosd, = .
(H, — m?a)® + m?n2d?]H2

(20)

The L and T, mode displacement vectors always
remain in the plane containing the wave normal
and the Z axis. As the three displacement vectors
2re mutually orthogonal and the 7, mode displace-
ment vector is always parallel to the basal plane,
€quation (20) will also give the deviation, 8, for
the T, mode. Figure 7 indicates how 3 varies as a
function of §. This figure indicates that other L,
Tx_’ T, pure mode directions will form a cone, with
s along the hexad axis, and the semi-angle of 50°.

As a comparison with CdS, Fig. 8 shows the
Curves of intersection of the velocity surfaces with
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Deviation of displacement vector of quasi-longitudinal wave (L mode) from
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Fic. 7. Deviation of displacement vector of quasi-
longitudinal wave (L mode) from the wave normal.
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Fic. 8. Curves of intersection of velocity surf?ces for
CdS in any plane containing the Z axis.
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Fic. 9. Comparison of experimental and theoretical
values of ¢;.
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any plane containing the Z axis. Data used for this
curve were obtained from measurements made by
Boref, MELAMED and MENEs.® The anisotropy
is slightly greater in ZnS than in CdS. Figure 9
compares the measured values of ¢;; with theoret-
jcal values calculated by ZupANOV and BRYSNEVA‘®
from measurements on cubic ZnS made by
BuaGAVANTAM and SURYANARAYANA.(™
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